SIM PROJECT PRELIMINARY INSTRUMENT SYSTEM REQUIREMENTS REVIEW (PISRR)

SIM Dynamics & Control Requirements Flowdown Process 17-18 March, 1998

Robert A. Laskin STB-3 Architect

 Motivation -- What's so special about Dynamics & Control Requirements Flowdown?

- Rule of thumb requirements
- Dynamics & Control Error Budgets

- Example -- 1 nm pathlength stabilization for nulling
 - Error Budget
 - Allocation of requirements across subsystems
 - Role of integrated modeling & testbeds

Summary/Conclusion

R. A. Laskin: - 2

Motivation

- Dynamics & control requirements tend to crosscut multiple subsystems
 - => trades need to be made at the system level

No.

Frequency Domain Mapping

- Determine the critical temporal frequencies that govern major parts of the system
 - Disturbance frequencies
 - > space environment -- thermal radiation, solar pressure
 - > on-board machinery
 - > microdynamics -- snap, crackle, pop
 - Control system bandwidths
 - > ACS
 - > active optics
 - Structural modes
 - > appendage modes
 - > core structure modes
 - > optical bench mounting modes
 - > optical component mounting modes
- Try to enforce frequency separation if possible
- Bootstrap: disturbance freq => control BW => structural freq
- Can trade amplitude for frequency separation

Preliminary SIM Frequency Domain Mapping

No.

Rule of Thumb Based Requirements Allocation

- ACS bandwidth < 0.1 Hz
 - disturbances are all low frequency
 - amplitudes are low
 - pointing requirement is modest
- Core structure fundamental frequency > 5 Hz (stiff as practical)
 - wide separation from ACS bandwidth
 - minimize thermal deformation
 - hold tight alignment tolerances
 - minimize vibration transmission
- Actuated body much stiffer than control loop
 - FSM 1000 Hz
 - ODL PZT mounted mirror 3 kHz
- Reactuate where structural interaction with support structure is likely
 - ODL PZT
 - ODL Voice Coil
 - FSM?

Error Budget Based Requirements Allocation

- Develop a dynamics & control error budget for each system mode
- Allocate errors to an a priori "level of equal pain" using engineering judgement
 - what is equal pain (cost, schedule, technical risk)
 - will top level requirement be met
- Reallocate errors in an iterative fashion
 - based upon models & analysis
 - > integrated models: controls, structure, optics
 - > start simple: optical sensitivity matrix, modal gain analysis, shock spectrum analysis, preliminary disturbance models, controller "filters"
 - > increase fidelity over time (e.g., incl. pod, hex, optics modes)
 - > put the requirements into the model
 - based upon testbed and bench testing
 - > STB-1 and STB-3
 - > component testing
 - based upon screams of pain (calibrate the whiners)

- Nulling Angle Tracking TBD mas (TBD mas on sky)
- Guide Star Fringe Tracking 10 nm
- Science Star Fringe Tracking 10 nm
- Guide Star Angle Tracking 30 mas (30 mas on sky, 330 mas on detector)
- Science Star Angle Tracking 30 mas
- Guide Star Fringe Acquisition 80 nm
- Science Star Fringe Placement (for Acquisition) 25 um
- Guide Star Angle Placement (for Acquisition) 1 arcsec
- Science Star Angle Placement (for Acquisition) 3 arcsec
- Fringe and Angle Tracking for Imaging TBD nm, TBD mas
- Guide Fringe Lock During Slews TBD nm jitter
- Guide Angle Lock During Slews TBD mas jitter
- Metrology Lock During Slews TBD nm jitter
- Settling Time Post Slews TBD seconds

Example -- 1 nm Pathlength Stabilization Nulling Fringe Tracking 1 nm RMS **Actuator Error** Sensor Error Controller Error 0.43 nm 0.63 nm 0.63 nm Computation Fringe Tracker Noise Delay Line Resolution Quantization .32 nm .10 nm .30 nm • Through PZT Loop .22 nm • Through Voice Coil Loop .22 nm Ideal Response to D/A Quantization Disturbances Accelerometer Noise .30 nm .62 nm .32 nm • RWA Disturbance .44 nm • Microdynamic Disturbance + Other .44 nm Accelerometer Calibration .32 nm **Space** • Alignment .22 nm Interferometry • Scale Factor .22 nm Mission Guide Internal Metrology Noise .32 nm

PISRR 17-18 March 98 STB-3 R. A. Laskin : - 10

Controller Errors

• Derived Requirements

Computational Precision shall be less than .05 nm

Reaction Wheel Emitted Vibration (measured blocked) shall be less than Jim Melody Model

Isolator Corner Frequency shall be less than 2 Hz

Hardback 1st Modal Frequency shall be greater than 5 Hz

Hardback Modal Damping Ratio shall be greater than .1%

Collector Pod 1st Modal Frequency shall be greater than 25 Hz

Collector Pod Modal Damping Ratio shall be greater than .1%

Fringe Tracking Closed Loop BW (incl accels) shall be greater than 100 Hz

Persistent Microdynamics Background Vibration (typical point on structure) shall be less than 10 ug/rt(N)*

Transient Microdynamics Disturbance Response (typical point on structure) shall be less than 1 cm/s or 50 nm

Transient Microdynamics Disturbance Response (typical point on structure) shall occur less than once per 10 minutes

* N = number of bounces in interferometer beam train

Sensor Errors

Derived Requirements

Fringe Tracker Noise within PZT Loop BW shall be less than .09 nm

Fringe Tracker Noise beyond PZT Loop BW shall be less than .09 nm (post-filtering)

Fringe Tracker Noise within VC Loop BW shall be less than .09 nm

Fringe Tracker Noise beyond VC Loop BW shall be less than .09 nm (post-filtering)

Accelerometer Noise within PZT Loop BW shall be less than .09 nm

Accelerometer Noise beyond PZT Loop BW shall be less than .09 nm (post-filtering)

Accelerometer Noise within VC Loop BW shall be less than .09 nm

Accelerometer Noise beyond VC Loop BW shall be less than .09 nm (post-filtering)

Accelerometer Calibrated Alignment to sensed axes shall be less than 260 urad (1 um amp, sin)

Accelerometer Scale Factor Calibration shall be less than .026% (1 um amplitude motion)

Internal Metrology Sensor Noise shall be less than TBD

Actuator Errors

 \geq

• Error Allocation

Actuator Error
0.43 nm

Delay Line
Resolution
.30 nm

D/A Quantization
.30 nm

• Derived Requirements

PZT Mechanical Resolution shall be less than .15 nm A/D Quantization Cmd to PZT shall be less than .15 nm

SIM Classic 3 Baseline Integrated Model

 \geq

isoview_3bsim6.eps Creator:

MATLAB, The Mathworks, Inc.

Preview:

Title:

This EPS picture was not saved with a preview included in it.

Comment:

This EPS picture will print to a PostScript printer, but not to other types of printers.

()

Disturbance Analysis

- Hubble Space Telescope Harmonic Disturbance RWA Model
 - Model Force/Torque Induced Vibration as Blocked Force
 - Assume Spin Motor Disturbance (Ripple and Cogging) Small
 - Stochastic Broadband Model
 - Discrete-Frequency RWA Model
 - > Sweep over wheel speeds (0 to 3000 RPM)
- OPD vs. RPM
 - Each Point Represents Standard Deviation of the Discrete Frequency PSD of OPD Resulting From the Disturbance of a Single RWA at a Given Speed

$$IV(t) = \int_{i=1}^{n} C_{i} f_{RWA}^{2} \sin\left(2 h_{i} f_{RWA} t + \int_{i}\right)$$

$$\int_{opd}^{2} (f_{RWA}) = \left|G(j)\right|_{\frac{OPD}{RWA}}^{2} (f_{RWA}) d$$

F(radial)

T(wobble)

T(ripple+cogging)

- Bearing Geometry, Bearing Race, Cage Speed, Operating Temp, Lubrication, Life
- Model Flexibility Rolloffs With Parameterized Filters
- Housing Flexibility, Bearing Impedance (100 Hz)
- Statistically Bound Problem Using Many RWA Models

Performance Prediction with IMOS Model

N I S

Sensitivity Chart

 \geq

S

Testbed Reality Chart

 \geq

N I S

Space Interferometry Mission

Hardware Testing Makes It Real

- The testbeds inform the process of dynamics/control requirements allocation in two major ways:
 - Supply real numbers to put in the error budget boxes
 - Validate the allocation process
 - > same methodology is applied to the testbeds
 - > error propagation assumptions can be checked
- STB-1 and STB-3 -- where the rubber meets the road for dynamics and control requirements flowdown

Summary

- Need to work the process for the new architecture
 - => Begin building a low complexity integrated model ASAP

STB-1 and STB-3 will be key system testbeds for validating dynamics/control requirements flowdown/flowup